There are two ways to create a instance of LocalOutlierFactor
- clf= LocalOutlierFactor(n_neighbors=n_neighbors, contamination=contamination, novelty=False)
in this case we can use : clf.fit_predict(X)
- clf = LocalOutlierFactor(n_neighbors=n_neighbors, contamination=contamination, novelty=True)
in this case we should use : clf.predict(X)
thanks