79257457

Date: 2024-12-06 09:26:40
Score: 1
Natty:
Report link

The line pd.to_numeric(read['Gross'], errors='coerce') is correct for converting a column with potentially non-numeric values to numeric values in pandas. However, when errors='coerce' is used, any non-numeric value in the column will be replaced with NaN.

for Example:

data = {'Gross': ['1234', '$4567', '789a', '12,345', None]}

read = pd.DataFrame(data)

Clean and convert

read['Gross'] = read['Gross'].astype(str).str.replace(',', '').str.replace('$', '').replace('nan', '')

read['Gross'] = pd.to_numeric(read['Gross'], errors='coerce')

Handle NaN

read['Gross'].fillna(0, inplace=True)

Reasons:
  • Long answer (-0.5):
  • No code block (0.5):
  • Low reputation (1):
Posted by: Sourav Kumar