79308595

Date: 2024-12-26 03:21:07
Score: 2.5
Natty:
Report link
  1. First, let's calculate how much memory your model might be using:

The error shows you're trying to allocate ~69GB (69271363584 bytes), which is far too large for most GPUs or CPUs

  1. Potential causes of the memory issue:

a) Input Dimensions:

You haven't shared the dimensions of your input data, but this could be a key issue Check your batch size, sequence length, and d_model values The memory usage grows quadratically with sequence length due to attention mechanisms

b) Positional Encoding Implementation:

self.encoding = torch.zeros(max_len, d_model)
  1. Suggestions for fixing the issue:

    class PositionalEncoding(nn.Module): def init(self, d_model, max_len=5000, dropout=0.1): super(PositionalEncoding, self).init() self.dropout = nn.Dropout(p=dropout)

         # Create more memory-efficient positional encoding
         pe = torch.zeros(max_len, d_model)
         position = torch.arange(0, max_len).unsqueeze(1).float()
         div_term = torch.exp(
             torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)
         )
    
         pe[:, 0::2] = torch.sin(position * div_term)
         pe[:, 1::2] = torch.cos(position * div_term)
         pe = pe.unsqueeze(0)
    
         # Register buffer instead of parameter
         self.register_buffer('pe', pe)
    
     def forward(self, x):
         x = x + self.pe[:, :x.size(1)]
         return self.dropout(x)
    
  2. Additional optimization suggestions:

    class TransformerDecoder(nn.Module): def init(self, vocab_size, d_model, num_heads, num_layers, max_seq_length): super(TransformerDecoder, self).init() self.embedding = nn.Embedding(vocab_size, d_model) self.positional_encoding = PositionalEncoding(d_model, max_seq_length)

         # Add dropout
         self.dropout = nn.Dropout(0.1)
    
         # Memory-efficient decoder layer
         decoder_layer = nn.TransformerDecoderLayer(
             d_model=d_model,
             nhead=num_heads,
             dim_feedforward=4*d_model,  # Standard size
             dropout=0.1,
             batch_first=True  # Avoid permute operations
         )
         self.transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers)
         self.fc_out = nn.Linear(d_model, vocab_size)
    
     def forward(self, target_seqs, memory, target_mask):
         embedded = self.embedding(target_seqs)
         embedded = self.positional_encoding(embedded)
         embedded = self.dropout(embedded)
    
         # No need for permute if batch_first=True
         output = self.transformer_decoder(embedded, memory, target_mask)
         return self.fc_out(output)
    
  3. To debug this issue:

a) Print the shapes of your tensors:

def forward(self, target_seqs, memory, target_mask):
    print(f"Target seqs shape: {target_seqs.shape}")
    print(f"Memory shape: {memory.shape}")
    print(f"Target mask shape: {target_mask.shape}")
    # ... rest of the forward method

b) Try reducing these parameters:

c) Add gradient checkpointing more strategically: from torch.utils.checkpoint import checkpoint

class TransformerDecoder(nn.Module):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.use_checkpointing = True  # Add a flag for checkpointing

    def forward(self, target_seqs, memory, target_mask):
        if self.use_checkpointing and self.training:
            return checkpoint(self._forward, target_seqs, memory, target_mask)
        return self._forward(target_seqs, memory, target_mask)

    def _forward(self, target_seqs, memory, target_mask):
        # Original forward pass code here
        pass

Could you share:

  1. What are the dimensions of your input data?
  2. The values you're using for d_model, num_heads, and num_layers?
  3. Your batch size?

This would help pinpoint the exact cause of the memory issue.

Reasons:
  • RegEx Blacklisted phrase (2.5): Could you share
  • Long answer (-1):
  • Has code block (-0.5):
  • Contains question mark (0.5):
  • Low reputation (1):
Posted by: codex