Just for others that may want an extra bit of code.
I ended up being able to do it with ifelse()
as well. It is less elegant than Grothendieck's solutions. However, in case someone finds it useful. I will leave it below.
#Example dataset
V1 <- c(1, NA, 6, 3, NA, NA, NA)
V2 <- c(1, NA, 6, 3, NA, NA, NA)
V3 <- c(NA, 3.5, NA, NA, 5, NA, NA)
V4 <- c(NA, 3.5, NA, NA, 5, NA, NA)
V5 <- c(NA, NA, NA, NA, NA, 5, 2)
V6 <- c(NA, NA, NA, NA, NA, 6, 1)
data <- data.frame(V1, V2, V3, V4, V5, V6)
#Creates the new grouping column
data$Group <- ifelse(!is.na(data$V1) & !is.na(data$V2), "G1",
ifelse(!is.na(data$V3) & !is.na(data$V4), "G2",
ifelse(!is.na(data$V5) & !is.na(data$V6), "G3", "Other")))