As @NelsonGon mentioned, vcov()
works. Please see the below example using Swiss data.
data(swiss)
### multiple linear model, swiss data
lmod <- lm(Fertility ~ ., data = swiss)
vcov(lmod)
The covariance matrix as below:
(Intercept) Agriculture Examination Education Catholic Infant.Mortality
(Intercept) 114.6192408 -0.4849476484 -1.2025734658 -0.281265331 -0.0221836036 -3.2658448131
Agriculture -0.4849476 0.0049426416 0.0043708713 0.004789532 -0.0005112844 0.0065656539
Examination -1.2025735 0.0043708713 0.0644541409 -0.027310637 0.0051339487 0.0003482484
Education -0.2812653 0.0047895318 -0.0273106371 0.033499469 -0.0030003666 0.0122667258
Catholic -0.0221836 -0.0005112844 0.0051339487 -0.003000367 0.0012431162 -0.0027467320
Infant.Mortality -3.2658448 0.0065656539 0.0003482484 0.012266726 -0.0027467320 0.1457098919