@PBulls thank you for your reply. I changed the ggemmeans code as you suggested. However, the outcome is still not linear. The Y-scale shows percentages, not log odds. Any idea how I can solve this?
ggemmeans(LMM_acc, terms = c("time_position.c", "response_side"), back.transform = FALSE) %>%
plot() +
geom_line(size = 2) +
aes(linetype = group_col) +
theme(legend.title = element_text(size = 30),
legend.position = 'top',
legend.key.size = unit('1.5', 'cm'),
axis.title.y = element_text(size = rel(2), angle = 90),
axis.title.x = element_text(size = rel(2)),
axis.text.x = element_text(size = 20),
axis.text.y = element_text(size = 20)) +
scale_colour_manual("response_side", values = c("purple","orangered")) +
scale_fill_manual("response_side", values = c("purple","orangered"),
guide = "legend") +
scale_linetype_manual("response_side", values = c(2,1)) +
guides(fill = guide_legend(override.aes =
list(fill = c("purple","orangered"))))