79660336

Date: 2025-06-10 11:31:07
Score: 0.5
Natty:
Report link

According to your requirements,to split each dataset row into two in Spark,flatMap transforms one row into two in a single pass, much faster than merging later. Just load your data, apply a simple function to split rows, and flatMap handles the rest. Then, convert the result back to a DataFrame for further use.

Below is the code snippets:

from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("SplitRows").getOrCreate()
data = [("a,b,c,d,e,f,g,h",), ("1,2,3,4,5,6,7,8,7,9",)]

df = spark.createDataFrame(data, ["value"])
df.show()

def  split_row(row):
parts = row.value.split(',')
midpoint =  len(parts) //  2
return [(",".join(parts[:midpoint]),), (",".join(parts[midpoint:]),)]

split_rdd = df.rdd.flatMap(split_row)
result_df = spark.createDataFrame(split_rdd)
result_df.show()

enter image description here

Output:
enter image description here

Reasons:
  • Probably link only (1):
  • Long answer (-0.5):
  • Has code block (-0.5):
  • Low reputation (0.5):
Posted by: Pritam