def RGB2HEX(color):
return "#{:02x}{:02x}{:02x}".format(int(color[0]), int(color[1]), int(color[2]))
def get_image(image_path):
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
return image
IMAGE_DIRECTORY = 'C:/Users/Dell/Desktop/CPS 02'
COLORS = {
'GREEN': [0, 128, 0],
'BLUE': [0, 0, 128],
'YELLOW': [255, 255, 0]
}
images = []
for file in os.listdir(IMAGE_DIRECTORY):
if not file.startswith('.'):
images.append(get_image(os.path.join(IMAGE_DIRECTORY, file)))
# extracting colors from image
def get_colors(images, number_of_colors, show_char = True):
for j in range(len(images)):
modified_image = cv2.resize(images[j], (600, 400), interpolation = cv2.INTER_AREA)
modified_image = modified_image.reshape(modified_image.shape[0]*modified_image.shape[1],1)
clf = KMeans(n_clusters = number_of_colors)
labels = clf.fit_predict(modified_image)
counts = Counter(labels)
center_colors = clf.cluster_centers_
# We get ordered colors by iterating through the keys
ordered_colors = [center_colors[i] for i in counts.keys()]
hex_colors = [RGB2HEX(ordered_colors[i]) for i in counts.keys()]
rgb_colors = [ordered_colors[i] for i in counts.keys()]
# matching an image by its color
def match_image_by_color(image, color, threshold = 60, number_of_colors = 10):
image_colors = get_colors(image, number_of_colors, False)
selected_color = rgb2lab(np.uint8(np.asarray([[color]])))
select_image = False
for i in range(number_of_colors):
curr_color = rgb2lab(np.uint8(np.asarray([[image_colors[i]]])))
diff = deltaE_cie76(selected_color, curr_color)
if (diff < threshold):
select_image = True
return select_image
# Selecting an image
def show_selected_images(images, color, threshold, colors_to_match):
index = 1
for i in range(len(images)):
selected = match_image_by_color(images[i], color, threshold, colors_to_match)
if (selected):
plt.subplot(1, 5, index)
plt.imshow(images[i])
index += 1
# printing the result
plt.figure(figsize = (20, 10))
show_selected_images(images, COLORS['BLUE'], 60, 5)
https://stackoverflow.com/questions