79750905

Date: 2025-08-30 02:54:30
Score: 0.5
Natty:
Report link

sqrt(x) = x * (0.707106781 ^ log_2(x))

Derivation

c² = a² + a² [right angle triangle having equal length legs]

c = sqrt(2) * a

---

a = c * sin(45°) [same triangle but with trigonometric relation]

---

c = sqrt(2) * c * sin(45°)

1 = sqrt(2) * sin(45°)

sqrt(2) = 1 / sin(45°)

---

x = 2^log_2(x)

log_2(x) = a

---

sqrt(x) = sqrt(2^a) = sqrt(2) ^ a

sqrt(2) ^ a = (1 / sin(45°)) ^ a = (1 / sin(45°)) ^ log_2(x)

sqrt(x) = (1 / sin(45°)) ^ log_2(x)

---

sin(n) = 2 * sin(n/2) * cos(n/2)

sin(90°) = 2 * sin(45°) * cos(45°)

sin(90°) = 1

---

sqrt(x) = (1 / sin(45°)) ^ log_2(x) = (2 * cos(45°)) ^ log_2(x) = x * (cos(45°) ^ log_2(x))

---

cos(45°) = 0.707106781

---

Test:

sqrt(500) = 22.360

500 * (0.707106781 ^ log_2(500)) = 22.360

Reasons:
  • Long answer (-0.5):
  • No code block (0.5):
  • Low reputation (0.5):
Posted by: user5588495